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SUMMARY

Complex terminal-area flight maneuvers being considered for airline

operations may not be acceptable to passengers. To provide technology in this

area, a series of flight experiments was conducted by NASA using the U. S. Air

Force Total In-Flight Simulator (TIFS) aircraft to obtain subjective responses

of a significant number of passenger test subjects to closely controlled and

repeatable flight maneuvers. Regression analysis of the data produced a mathe-

matical model which closely predicts mean passenger ride-comfort rating as a

function of the rms six-degree-of-freedom aircraft motions during the maneuver.

This ride-comfort model has been exercised to examine various synthesized
flight maneuvers.

INTRODUCTION

Complex terminal-area flight maneuvers, used in conjunction with area-

navigation and 4-D takeoff/approach techniques, are being considered to reduce

fuel usage, noise pollution, and air-traffic congestion. Flight research to

determine the feasibility of incorporating such unusual flight maneuvers into

routine operations is part of NASA's Terminal-Configured-Vehicle Program

(ref. 1). Such maneuvers, however, may not be acceptable to passengers since

certain combinations of linear and angular motions are known to be upsetting

to the human vestibular system. Several years ago, exploratory flight experi-

ments concerning maneuver effects on ride quality conclusively indicated that

criteria are needed which include more than just vertical and lateral motions

(ref. 2). As ride comfort is a significant factor in determining acceptance

and use of air transportation, a need exists for technology which will allow

prediction of the degree of passenger comfort for terminal-area flight
maneuvers.

Technology applicable to anticipated needs does not presently exist.

Ride-comfort research has been conducted both in the field, aboard commercial

and research vehicles, and in the laboratory using motion simulators. Labor-

atory simulators, however, lack motion capability sufficient to simulate flight

maneuvers, whereas field tests aboard commercial vehicles do not allow precise

control and repetition of a given maneuver. To provide the technology from

which ride-quality predictive relations and criteria can be established for

terminal-area maneuvers, a series of flight experiments was conducted by NASA

using the U. S. Air Force Total In-Flight Simulator (TIFS) aircraft (fig. i).

The TIFS, piloted by a magnetic tape, was used to expose passenger test subjects

to closely controlled and repeatable flight maneuvers. This paper describes

these experiments, the regression analysis applied to the data to produce a
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ride-comfort model, and the results obtained when the model was exercised for

various synthesized flight maneuvers.

TEST VEHICLE

The U. S. Air Force Total In-Flight Simulator (TIFS) is a C-131H

transport (similar to a Convair 580 commercial transport) modified into a

variable-stability research aircraft. Figure 2(a) illustrates the distinctive

features of the aircraft. A simulation cockpit, mounted on the nose of the

C-131H, is designed to place evaluation pilots in an environment configured

to closely duplicate that of the cockpit of the aircraft being simulated.

Special provision is made for independent control of the forces and moments

about all three motion axes. Included are aerodynamic surfaces mounted verti-

cally above and below each wing to provide side-force variation with very littl

rolling or yawing moment, aileron-type flaps immediately outboard of the engine

to provide direct lift control, and servo-operated throttles to provide longi-

tudinal force variation. High-performance electrohydraulic actuators drive the

existing ailerons, elevator, and rudder to produce rolling, pitching, and yaw-

ing moments, respectively. In the standard Convair cockpit, safety pilots

monitor the simulation in progress and have the capability of disengaging the

variable-stability system and resuming control of the aircraft at any time.

The variable-stability system includes an analog computer and associated elec-

tronics located in the aft cabin. Inputs to the computer come from the

evaluation pilot's controls and airplane motion sensors. A digital recording

system capable of recording 58 individual variables, such as airplane motions

and pilot control inputs, logs test results for engineering evaluation.

Figure 2(b) illustrates the TIFS modifications made for ride-quality

testing. The standard TIFS simulation cockpit was replaced with a noise fair-

ing. The aircraft cabin section between the cockpit and computer (fig. 3) was

outfitted with wood paneling, curtains, and a carpet to create an airline-type

atmosphere. Five standard Convair double seats were provided for the lO test

subjects. Each passenger seat was provided with a reading light, an adjustable

outlet of conditioned air, a seat pocket with airsickness bag, and an emergency

evacuation instruction card. A restroom, equipped with a marine-type toilet,

was provided adjacent to the test-subject area. The TIFS hydraulic console

area was soundproofed and trimmed with wood paneling to muffle the sound of

continuous-duty hydraulic boost pumps. All but one pair of test-subject seats

were adjacent to a window. An additional double seat for the flight-test

director was provided immediately behind the test subjects, together with

voice communications to the pilots and test engineer and a public address sys-

tem for instructing the passenger subjects during flight. A closed-circuit

television camera was mounted in the safety cockpit to record copilot head

motions, and another camera was mounted behind a panel to record activity of

a few of the test subjects. For the ride-quality experiments, the pilot-

control inputs were replaced by magnetic tape command signals. These command

signals were then combined with appropriate filtering and shaping to generate

commands to the TIFS flight control surfaces necessary to produce the desired

aircraft motions. A two-axis side stick controller gave the ccpilot the

capability of maneuvering the aircraft with the variable-stability system
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engaged. Further details concerning the TIFS modifications for ride-quality

research and test techniques employed are reported in reference B.

FLIGHT TESTS

Flight Maneuvers

Maneuvers investigated individually consisted of one of three basic

components (steady descent, steady turn, or longitudinal deceleration) of

typical terminal-area flight maneuvers. A few combinations of two or three

of these components were used to study subjective responses to more complex

maneuvers (e.g., a turning decelerating descent, etc.). The range of each

maneuver motion variable (e.g., approach angle, roll angle, etc.) somewhat

exceeded the motion variable range normally encountered during terminal-area

maneuvers of commercial passenger aircraft. Table I summarizes both the

ranges of key motion variables and the number of unique variable combinations

tested for each type of maneuver. Maneuvers, generally of 30-second duration,

were sequenced at approximately 90-second intervals on 2 test tapes of 24

segments each.

The excellent repeatability of flight maneuvers provided by magnetic tape

control of the aircraft is illustrated in figure 4. The figure presents time

histories of _four appropriate motion parameters measured during a particular

maneuver flown on two different flights. The maneuver shown is a turning

decelerating descent, which was probably the most complex and extreme maneuver

tested and therefore was one of the most difficult to repeat. Differences in

parameter values are relatively minor between flights and are essentially

constant over the time duration of the maneuver for the three parameters (roll

angle, pitch angle, and indicated airspeed) which were specifically controlled

by the motion-command tape. Differences could be expected to be nearly con-

stant because each of the three parameters was recorded on the drive tape in

terms of parameter deviation from a reference flight condition. The slight

shifts in parameter values between the two flights are associated with minor

changes in reference flight conditions by the copilot to avoid weather, to

stay within a certain test area, or to increase/decrease test altitude.

Passenger Subjects

Thirty-two passenger subjects of both sexes were chosen from among NASA

employees, university students, and the general public to include a range of

age and previous flight experience and to represent air travelers in general.

Table II compares characteristics of the passenger subjects with those of air

travelers in general. Approximately 1 hour prior to a given test flight, lO

of the test subjects were assembled and briefed on the purposes of the TIFS

Ride-Quality Program in general and of the upcoming flight in particular. The

subjects were informed of the types and degrees of motion to be tested and of

the ability of any subject at any time to terminate the input motion by a
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simple hand signal (such termination, in fact, occurred more than once). Aftel

all questions were answered, each subject signed a statement of voluntary par-

ticipation and boarded the aircraft.

Test Procedure

Once all passenger subjects were aboard and seated with seat belts secured

the TIFS aircraft took off and during about 15 minutes climbed to the appropri-

ate test area, altitude, and heading. The aircraft was then trimmed in straigh

and level flight and the variable-stability system engaged. The motion-command

tape recorder was started and the motion command signals were brought to full

strength. For the next 30 to 40 minutes the aircraft was piloted by the tape

recorder, with the exception of occasional pitch and roll trim changes by the

copilot to keep the aircraft within safe test airspace. As the various test

maneuvers were experienced in the aircraft, the beginning and end of each

evaluation interval (typically 30 sec) were announced over the aircraft's

public address system by the test director. At the end of each evaluation

interval, each passenger subject recorded on a rating sheet his estimate of his

own total comfort on a 7-point rating scale employing undefined descriptors

ranging from "Very Comfortable" to "Very Uncomfortable" (see table III). In

addition, each subject was asked to report in a "Comments" column any aspect

of the passenger environment which he considered dominant in his assessment of

personal comfort. Upon completion of the entire set of motion test segments,

the motion command signals were attenuated, the tape recorder was stopped, the

variable-stability system disengaged, and the aircraft returned to the Langley

Research Center and landed. During the return trip, the passenger subjects

completed summary questionnaires stating their assessments of the overall

comfort (using the 7-point scale) of the test ride and of specific aspects of

ride comfort (e.g., motion, noise, seat comfort, etc.). Upon landing, the

passengers deplaned and, after a short debriefing, were dismissed.

RESULTS

The 2 test tapes of 24 segments each provided a total of 48 individual

flight maneuvers to be repeated 4 times. With lO subjects onboard each flight,

the resulting 192 flight maneuvers provided a grand total of 1920 individual

ride-comfort ratings. Space does not permit tabulation of individual ride-

comfort ratings versus flight-condition variables. For each flight, the total

number in each comfort rating is presented in table IV, however, to indicate

that the entire ride-comfort rating scale was used and to provide a general

idea of consistency between flights. It should be pointed out that between

flights using the same maneuver tape there were sometimes differences in test

altitude and air turbulence. The mean ride rating for all maneuvers was 3.63

and the corresponding standard deviation was 1.50.

During one 2-hour flight, subjects were exposed to two identical programed

sequences to investigate possible changes in test subject's comfort ratings of
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identical segments spaced 1 hour apart. The results reported in reference 4
indicated no significant effect of time.

To illustrate detailed typical results, the time histories of all 13
recorded motion variables and the 40 individual ride-comfort ratings are pre-
sented in figure 5 for the 4 flights of a turning decelerating descent maneuver.

DATAANALYSIS

Because of the great numberof variables involved and the desire to develop
a ride-quality model from the data, the regression analysis approach was used

to analyze the data. Several analyses were employed to explore the suitability

of various parameters and parameter combinations (e.g., peak value accelera-

tions, rms velocities, etc.) to provide a meaningful model.

The simplest measure of each motion variable is the maximum deviation of

that variable from zero during the maneuver interval. Initial correlation and

regression analyses therefore used as input data maximum variable values which

were read directly from time-history plots. However, this approach presented

two major difficulties. It was frequently difficult to decide which value of

a given variable in a given maneuver interval should be recorded. In addition,

amplitude-duration effects were totally lost. Therefore, a further analysis

used as independent variables the root-mean-square (rms) values of each motion

variable. Table V presents the simple correlations existing among the various

rms motion variables and the resulting individual ride-comfort ratings. On the

basis of these correlations and to facilitate the comparison of results with

those of vibratory-motion ride-comfort experiments, a linear regression analysis

was used to obtain the following ride-comfort model based on rms linear accelera-

tions and angular rates:

Ride-comfort rating = 1.65 + 8.32n + 15.1n
x y

where: n = rms longitudinal acceleration
X

n = rms transverse acceleration
Y

n = rms normal acceleration
z

+ 21.5n z + 0.183p - 1.20q - 0.238r

p = rms roll rate

q = rms pitch rate

r = rms yaw rate

The multiple correlation coefficient for the model is 0.57 and the regression

F statistic is 156. The relationship between the ride-comfort rating pre-

dicted by this equation for each test maneuver and the mean value of the

corresponding i0 experimental passenger ratings for that maneuver is shown in

figure 6. For the 192 maneuvers the rms difference between predicted ride-

comfort rating and mean experimental rating is 0.55; the corresponding correla-

tion coefficient is 0.85.
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APPLICATIONOFRIDE-COMFORTMODEL

Method of Application

The ride-comfort model has been used to predict the ride comfort of
computer-synthesized simple turns, descents, and decelerations with pitchover.
The rms value of each of the six motion variahles over the maneuverduration we
calculated and then substituted into the regression equation to obtain a ride-
comfort rating. A synthesized turn (fig. 7) is based on three assumptions: a
sinusoidal roll-rate time history during turn entry and exit; the lift versus
angle-of-attack characteristics of the aircraft (in this case the TIFS); and a
level, fully coordinated turn. Roll angle is assumedto be the analytical

• integral of roll rate. The roll angle, in turn, specifies the normal accelera-
tion, which together with the airspeed determines the pitch angle and hence
the longitudinal acceleration. Euler transformations resolve the net aircraft
rotation rate into both the assumedroll rate and the corresponding pitch and
yaw rates. Parameters which can be varied are airspeed, maximumroll angle,
maximumroll rate, and turn duration. The effects of aircraft motion response
to atmospheric turbulence are approximated by superimposing on each of the six
motion-variable time histories a randomoscillatory signal having a zero mean
and an appropriate standard deviation. These standard deviations (table VI)
were selected by examining rms motion amplitude data obtained aboard commercia/
airline flights (ref. 5). Similar maneuversynthesis techniques were applied
to steady descents and longitudinal decelerations. On an rms amplitude basis,
agreement between corresponding variables is quite good. The ride-comfort
rating predicted by the comfort model for the synthesized maneuver is 3.1; the
meanexperimental rating given the actual maneuver is 2.9.

Steady Turns

The variation of predicted ride-comfort rating with roll angle in a stead_
turn is shownin figure 8(a) for various turbulence levels. For zero and light
turbulence, ride comfort is little affected by roll angles less than 20° but
degrades rapidly and becomes"Uncomfortable" at about 50° . Turbulence inten-
sity significantly degrades ride comfort for small roll angles but has a much
smaller effect as roll angle increases. As the turbulence intensity increases_
the roll angle above which ride comfort significantly degrades increases. For
zero bank angle and for the various turbulence intensities, ride-comfort ratine
predicted by a two-degree-of-freedom regression model developed at the Univer-
sity of Virginia (ref. 6) are shownalong the ride-comfort axis. Also shown iz
figure 8(a) are steady-turn data obtained by the University of Virginia during
ride-quality flight experiments using the NASAJetstar aircraft (ref. 7).
Agreement is quite good.

The variation of predicted ride-comfort rating with roll angle for various
airspeeds is shownin figure 8(b). The slight degradation of comfort at low
roll angles with decreasing airspeed is due to increased longitudinal accelera-
tion accompanyingincrease in pitch angle. For roll angles greater than 30° ,
decreasing airspeed improves the predicted comfort by increasing the aircraft
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yaw rate (because the yaw-rate regression coefficient is negative). For typical
terminal-area airspeeds, the influence of airspeed on ride comfort in turns
appears to be minor.

The variation of predicted ride-comfort rating with roll angle in steady
turns for various maximumroll rates is shownin figure 8(c). Maximumroll
rates typical of transport aircraft operations appear to have little influence
on passenger comfort.

The effects of turn duration (time at maximumroll angle) on the variation
of predicted ride-comfort rating as a function of roll angle are shownin
figure 8(d). At roll angles less than 27°, increasing duration has a slightly
beneficial effect. This effect occurs because of decreased rms roll rate and
increased rms pitch and yaw rates (which have negative regression coefficients).
For roll angles greater than 27° , the rapid increase in linear acceleration
(particularly normal acceleration) with increasing roll angle reverses the
situation, so that increased duration results in a degradation of comfort.
However, in either case, the effects of turn duration appear to be minor ex-
cept at high roll angles.

Steady Descents

The variation of predicted ride-comfort rating with steady descent pitch
angle for various turbulence intensity levels is shownin figure 9. Because

aircraft attitude is constant, ride comfort predicted by the regression model

depends only on rms normal and longitudinal accelerations, which are symmetric

about a zero pitch angle. This symmetry'is due to the nature of the regression

model employed and may not properly predict the ride comfort of large nose-up

pitch angles. The degradation of ride comfort with increasing pitch angle is

practically linear. The effects of turbulence intensity are relatively con-

stant over the range of pitch angles shown. The ride-comfort ratings predicted

by the University of Virginia regression model for a zero pitch angle are also

shown on the figure.

Longitudinal Decelerations

The variation of predicted ride-comfort rating with average longitudinal

deceleration is shown in figure 10(a) for various turbulence intensities. The

airspeed is assumed to start at 200 knots and decrease over a 20-second inter-

val (with a sinusoidal time history) at zero pitch angle. This deceleration

is followed immediately by a 10-second pitchover to a final pitch angle of -5 °.

The effect on ride comfort of increasing average deceleration appears to be

minor. The effects of turbulence are almost constant over the range of decel-

erations shown. Ride-comfort ratings predicted by the University of Virginia

regression model at zero decelezation are also shown on the figure.

The effects of average deceleration on predicted ride comfort for various

negative final pitch angles are presented in figure lO(b). The mean slope of
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this variation decreases as the magnitude of the final pitch angle increases

and may actually become negative at pitch angles more negative than -lO ° .

This is because the pitchover greatly increases the rms normal acceleration

for higher airspeeds. Thus, increasing the average deceleration to decrease

the airspeed at pitchover reduces the normal acceleration contribution to

discomfort. Reduction of airspeed prior to initiating any substantial pitch-

over will therefore improve ride comfort. The results also suggest that the

maximum negative pitch angle be limited to a value of i0 ° .

CONCLUDING REMARKS

A series of flight experiments has been conducted using a variable-

stability research aircraft and a significant number of passenger subjects

to investigate the ride quality of terminal-area flight maneuvers. The data

obtained have been analyzed through multiple linear regression to produce a

ride-comfort model. The model predicts the ride comfort of a flight maneuver

as a function of the rms six-degree-of-freedom motions of the aircraft during

the maneuver. Application of the model to computer-synthesized maneuver time

histories indicates that:

(i) Roll angle during steady turns should be limited to a maximum of 30 °

(2) The effects on ride comfort of roll rate, airspeed, and duration

during steady turns are minor.

(3) Nose-down pitch angle during steady descents should be limited to a

maximum of i0 ° .

(h) Ride comfort during longitudinal deceleration and pitchover is

primarily dependent upon the change in pitch attitude and is only mildly

affected by the average longitudinal deceleration.

(5) Reduction of airspeed prior to initiating any substantial pitchover

will improve ride comfort.
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TABLE I. - TIFS FLIGHT TEST MANEUVERS

Maneuver type

Descent

Turn

Longitudinal

deceleration

Combination

Variables

Pitch attitude

Descent rate

Initial altitude

Roll attitude

Roll rate

Airspeed
Altitude

Longitudinal

deceleration

Range

-13.5 ° to 6._ °

-i._7 to 23.77m_sec
1036 to 3231 m

._.jSOe

+2._0 deg/sec

135 to 205 knot

h27 to 3322 m

0.06 to 0.18 g unit
Descent

acceleration 0 to 0.79 g unit

Final pitch

attitude -6.6 to 0.9 °

Pitch rate

Initial altitude

Longitudinal

deceleration

Descent

acceleration

Final pitch

attitude

Pitch rate

Roll altitude

Roll rate

Initial airspeed
Initial altitude

Total number of maneuvers

-5.2 to 0 deg/sec

731 to 3292 m

0.06 to 0.18 g unit

0 to 0.6 _ unit

-5.2 ° to 3.3 °

-4.9 to 0 deg/sec

+_42°
15 deg/sec

190 to 210 knot

1006 to 3170 m

Combinations

of unique

variables

ll

23

lO

4

48

.......- _-__.,_s_O.v T1_b
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TABLE II. -TIFS MANEUVER EXPERIMENT

PASSENGER SUBJECT CHARACTERISTICS

Characteristics

Age:

20 yr and under ..........

21 to 40 yr .............

41 to 60 yr .............

61 yr and over ...........

Sex :

Male

Female

.o.oooo.oooo.e.

.,,.o,ooJo..°o

Frequency of flying (number

of times in last 2 yr):

O • • • - • • • • • • • • • , . • °

i to 3 ............... !h
4to 9 ...............

I0 to 25 ..............

25 and over ............

Air travelers in

general, percent

18

45

32

5

75

25

}

17

63

2O

Test subjects,

percent

16

53

31

0

66

34

6

19
31

_4
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TABLEIII. - RIDE-COMFORTRATINGSCALE

Very comfortable ..... i
Comfortable ....... 2

Somewhat comfortable . . • 3

Neutral ......... 4

Somewhat uncomfortable . . 5

Uncomfortable ...... 6

Very uncomfortable .... 7

Table IV. - RIDE-COMFORT RATING DISTRIBUTION

Maneuver

tape

II

I

II

II

I

I

II

I

Flight

test

1

2

3

5
6

7
8

Total

Ratin_ of -
1 2 3 4 5 6

16 43 44 38 58 31

28 53 46 29 50 26

32 h8 37 28 68 26 i

23 61 43 43 51 _17 2

5 47 52 52 68 16 0

5 41 43 55 I 81 ll 4

13 70 62 38 46 7 4

9 43 63 46 55 _20 4

i

131 406 390 329 1477 154 33

i

T

lO

8
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TABLE Vl. - MOTION-VARIABLE STANDARD DEVIATIONS ASSUMED

FOR AIRCRAFT TURBULENCE RESPONSE

Variable

Longitudinal acceleration, g unit ....

Transverse acceleration, g unit .....

Normal acceleration, g unit .......

Roll rate, deg/sec ...........

Pitch rate, deg/sec ...........

Yaw rate, deg/sec ............

Zero
Turbulence Intensity

Light Moderate

0 0.002 0.020

o .oo3 .o3o
0 .OlO .lO0

0 .2 2.0

o .1 .6

o .i .8

Heavy

o.o4o

.060

.200

4.0

1.1

1.6
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Figure 1.- U.S. A i r  Force Total  I n  Fl ight  Simulator (TIFS). 

*:.:-:*:- MOTION COMMAND *.... .... ..... .... ..... .... SOURCE 

MOTION CONTROL 
SURFACES 1 1 1  I I I I . 

\ 

Figure 2.- TIFS modifications f o r  r ide-qual i ty  research. 

R ~ O D U C I B I L I ~  OF THE 
0IUQNM.i PAGE IS POOR 
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Figure 3.- TIFS passenger cabin for r ide-qual i ty  experiments. 

(TYPICAL) 
-y 10 sec + 

ANGLE, 0 

-20 
TIME PITCH ANGLE, 

deg -2 
220 

I N  D 1 CATED 
A I RS PEED, 

0 
T IME 

-4 

-6 

-8 

LONGITUDINAL 0 
ACCELERATION. 

g unit -.2 

Figure 4.- Example of maneuver r e p e a t a b i l i t y  between f l i g h t s  
for tape-controlled TIFS i n  turn ing  dece lera t ing  descent. 
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Figure 6.- Experimental rating as a function of model prediction of

ride quality.
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Figure 7.- Time history of example computer-synthesized maneuver

(steady turn).
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Figure 8.- Predicted comfort of steady turns.
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Figure 8.- Concluded.
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Figure 9.- Predicted comfort of steady descents for various

turbulence intensities.
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Figure i0.- Predicted comfort of longitudinal decelerations.


